Mg2+-dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis

نویسندگان

  • Andrei Yu. Kobitski
  • Alexander Nierth
  • Mark Helm
  • Andres Jäschke
  • G. Ulrich Nienhaus
چکیده

Here, we report a single-molecule fluorescence resonance energy transfer (FRET) study of a Diels-Alderase (DAse) ribozyme, a 49-mer RNA with true catalytic properties. The DAse ribozyme was labeled with Cy3 and Cy5 as a FRET pair of dyes to observe intramolecular folding, which is a prerequisite for its recognition and turnover of two organic substrate molecules. FRET efficiency histograms and kinetic data were taken on a large number of surface-immobilized ribozyme molecules as a function of the Mg(2+) concentration in the buffer solution. From these data, three separate states of the DAse ribozyme can be distinguished, the unfolded (U), intermediate (I) and folded (F) states. A thermodynamic model was developed to quantitatively analyze the dependence of these states on the Mg(2+) concentration. The FRET data also provide information on structural properties. The I state shows a strongly cooperative compaction with increasing Mg(2+) concentration that arises from association with several Mg(2+) ions. This transition is followed by a second Mg(2+)-dependent cooperative transition to the F state. The observation of conformational heterogeneity and continuous fluctuations between the I and F states on the approximately 100 ms timescale offers insight into the folding dynamics of this ribozyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models

We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels-Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were con...

متن کامل

Atomic force microscopy and anodic voltammetry characterization of a 49-mer diels-alderase ribozyme.

Atomic force microscopy and differential pulse voltammetry were used to characterize the interaction of small highly structured ribozymes with two carbon electrode surfaces. The ribozymes spontaneously self-assemble in two-dimensional networks that cover the entire HOPG surface uniformly. The full-length ribozyme was adsorbed to a lesser extent than a truncated RNA sequence, presumably due to t...

متن کامل

Metals induce transient folding and activation of the Twister ribozyme

Twister is a small ribozyme present in almost all kingdoms of life that rapidly self-cleaves in variety of divalent metal ions. We used activity assays, bulk FRET and single-molecule FRET (smFRET) to understand how different metal ions promote folding and self-cleavage of the Oryza sativa twister ribozyme. Although most ribozymes require additional Mg2+ for catalysis, twister inverts this expec...

متن کامل

Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme.

The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-I(eq)-to-N, and focused on the I(eq)-to-N transition. The present study focuses on the U-to-I(eq) transition. Compa...

متن کامل

Radioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions

Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007